Dynamics in Spatially Confined Hamiltonian Systems

Piotr Bizoń, Patryk Mach, Andrzej Rostworowski Dominika Hunik-Kostyra, Filip Ficek

Kraków, 29 January 2018

Propagation of nonlinear waves

Unbounded domain

Bounded domain

System settles down to equilibrium via dissipation of energy by dispersion

Waves keep interacting for all times, generating out-of-equilibrium dynamics

- Understanding of long-time behavior of nonlinear waves in spatially confined systems is a very challenging problem
- Our goal is to advance this understanding

Nonlinear waves in spatially confined systems

- There are different mechanisms of confinement: compact domain, trapping potential, or a timelike boundary
- Key questions:
 - How the energy injected into the system gets distributed over the degrees of freedom during the evolution?
 - Can the energy flow to arbitrarily small wavelengths (weak turbulence)?
- The proposal lies at the interface between the theory of nonlinear dispersive equations and various areas of nonlinear physics:
 - wave and quantum turbulence
 - general relativity
 - gauge/gravity duality
- Possible applications:
 - motion of vortices in Bose-Einstein condensates
 - modeling of surface water waves
 - engineering efficient fiber optics cables

Why now?

- Hot emerging area of research, both in mathematics and physics
- Despite recent progress, this area remains largely unexplored

Why us?

- Experience in studies of nonlinear systems
- Unique style of research and extensive toolbox
- Promising preliminary results
- Great team of collaborators and students