Stability of a Schwarzschild Singularity

Tullio Regge, Istituto di Fisica della Universild di Torino, Torino, Italy
and
John A. Wheeler, Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

(Received July 15, 1957)

Abstract

It is shown that a Schwarzschild singularity, spherically symmetrical and endowed with mass, will undergo small vibrations about the spherical form and will therefore remain stable if subjected to a small nonspherical perturbation.

EFFECTIVE POTENTIAL FOR EVEN-PARITY REGGE-WHEELER GRAVITATIONAL PERTURBATION EQUATIONS*

Frank J. Zerilli
Physics Department, University of North Carolina, Chapel Hill, North Carolina 27514
(Received 29 January 1970)
The Schrödinger-type equation for odd-parity perturbations on a background geometry has been extended to the even-parity perturbations. This should greatly simplify the analysis for calculations of gravitational radiation from stars and from objects falling into black holes.

Perturbations in vacuum - general setup

Consider $R_{\mu \nu}[g]=0$

Let $g_{\mu \nu}=\bar{g}_{\mu \nu}+\delta g_{\mu \nu}$, with being $\bar{g}_{\mu \nu}$ an exact solution
Now in Einstein equations $\delta R_{\mu \nu}[\delta g]=0$ expand $\delta g_{\mu \nu}=\sum_{i} \varepsilon^{i} h_{\mu \nu}^{(i)}$ itself and get the hierarchy of perturbative Einstein equations (expression for $\delta R_{\mu \nu}$ contains all powers of $\delta g_{\mu \nu}$):

$$
\Delta_{L} h_{\mu \nu}^{(i)}=S_{\mu \nu}^{(i)}
$$

Thus, we trade nonlinearities of Einstein equations for an infinite system of linear inhomogeneous equations (the sources $S_{\mu \nu}^{(i)}$ are constructed from metric perturbations $h_{\mu \nu}^{(j)}$, with $\left.j<i\right)$. To solve it one needs:
(1) a general solution of a principal (homogeneous) part
(2) a particular solution of inhomogeneous part

$$
\begin{aligned}
& \Delta_{L}^{(i)} h_{\ell t t}=\left[\frac{\left(2 A+r A^{\prime}\right)^{2}-2\left(r A^{\prime}\right)^{2}+2(\ell-1)(\ell+2) A}{4 r^{2} A}+\left(\frac{A^{\prime}}{4}-\frac{A}{r}\right) \partial_{r}-\frac{A}{2} \partial_{r r}\right]{ }^{(i)} f_{\ell t t}+\left[\frac{A A^{\prime}}{2} A \partial_{r}-\partial_{t t}\right]{ }^{(i)} f_{\ell+} \\
& -A\left[\frac{\left(2 A+r A^{\prime}\right)^{2}-4 A}{4 r^{2}}+\frac{A A^{\prime}}{4} \partial_{r}+\frac{1}{2} \partial_{t t}\right]{ }^{(i)} f_{\ell r r}+\left[\left(\frac{A^{\prime}}{2}+\frac{2 A}{r}\right) \partial_{t}+A \partial_{t r}\right]{ }^{(i)} f_{\ell t r}, \\
& \Delta_{L}{ }^{(i)} h_{\ell r r}=\left[\frac{4 A(1-A)+\left(r A^{\prime}\right)^{2}}{4 r^{2} A^{3}}-\frac{A^{\prime}}{4 A^{2}} \partial_{r}+\frac{1}{2 A} \partial_{r r}\right]{ }^{(i)} f_{\ell t t}-\left[\left(\frac{A^{\prime}}{2 A}+\frac{2}{r}\right) \partial_{r}+\partial_{r r}\right]{ }^{(i)} f_{\ell+} \\
& \left.+\left[\frac{\left(2 A+r A^{\prime}\right)^{2}+2 A\left(2 r A^{\prime}+(\ell-1)(\ell+2)\right)}{4 r^{2} A}+\left(\frac{A^{\prime}}{4}+\frac{A}{r}\right) \partial_{r}+\frac{1}{2 A} \partial_{t t}\right]{ }^{(i)}\right)_{\ell r r}-\left(\frac{A^{\prime}}{2 A^{2}} \partial_{t}+\frac{1}{A} \partial_{t r}\right){ }^{(i)} f_{\ell t r}, \\
& \Delta_{L}{ }^{(i)} h_{\ell t r}=\frac{A}{r} \partial_{t}^{(i)} f_{\ell \ell 11}+\left[\left(\frac{A^{\prime}}{2 A}-\frac{1}{r}\right) \partial_{t}-\partial_{t r}\right]^{(i)} f_{\ell+}+\frac{\ell(\ell+1)}{2 r^{2}}{ }^{(i)} f_{\ell t r}, \\
& \Delta_{L}{ }^{(i)} h_{\ell+}=\left[-\frac{2 r A^{\prime}+\ell(\ell+1)}{4 A}+\frac{r}{2} \partial_{r}\right]{ }^{(i)} f_{\ell(t}+\frac{A}{2}\left[\left(2 A+3 r A^{\prime}+\frac{\ell(\ell+1)}{2}\right)+r A \partial_{r}\right]{ }^{(i)} f_{\ell r r} \\
& +\frac{1}{2}\left[(\ell-1)(\ell+2)-r\left(4 A+r A^{\prime}\right) \partial_{r}-r^{2} A \partial_{r r}+\frac{r^{2}}{A} \partial_{t t}\right]{ }^{(i)} f_{\ell+}-r \partial_{t}{ }^{(i)} f_{\ell t r}, \\
& \Delta_{L}{ }^{(i)} h_{\ell t \theta}=\frac{1}{2}\left[\left(A^{\prime}+A \partial_{r}\right)^{(i)} f_{\ell t r}-A \partial_{t}^{(i)} f_{\ell r r}-\partial_{t}^{(i)} f_{\ell \ell}+\right] \text {, } \\
& \Delta_{L}{ }^{(i)} h_{\ell r \theta}=\frac{2 A+r A^{\prime}}{4 r}{ }^{(i)} f_{\ell r r}-\frac{1}{2} \partial_{r}{ }^{(i)} f_{\ell+}-\frac{1}{2 A} \partial_{t}{ }^{(i)} f_{\ell t r}+\frac{1}{2 A}\left(-\frac{2 A+r A^{\prime}}{2 r A}+\partial_{r}\right){ }^{(i)} f_{\ell t t}, \\
& \Delta_{L}^{(i)} h_{\ell-}=\frac{1}{4}\left(\frac{1}{A}^{\left.\left({ }^{i}\right)_{\ell \ell t}-A^{(i)} f_{\ell r r}\right) .}\right.
\end{aligned}
$$

